Главная / Исследования. Разработки. Изобретения. Новинки / Ослабление болтов и резьбовых крепежных деталей от вибрации

Ослабление болтов и резьбовых крепежных деталей от вибрации

Конечно мы не откроем Америку заявив что значительным преимуществом болтовых соединений над другими типами, например, такими как сварные и заклепочные соединения, является их способность к демонтажу.

Однако данное свойство – это не только преимущество. Оно может приводить к проблемам, таким, например, как случайное самоослабление в ходе эксплуатации. Такое случайное самоотвинчивание, которое в литературе называется вибрационное ослабление, является важным явлением. Но самое неприятное в том, что оно часто недооценивается инженерами.

вибрация в разъемных соединениях

А между тем, проектировщику крайне важно быть осведомленным о причинах возможного ослабления болтов, и он просто обязан принимать такие причины во внимание при разработке надежных соединений.

Информация, которую мы приводим ниже, как раз рассказывает про ослабление болтов и резьбовых крепежных деталей от вибрации. И это ключевые факты для проектировщиков по теории ослабления резьбовых крепежных соединений, а также о методах предотвращения самоотвинчивания

 

Во многих конструкторских изданиях описываются многочисленные специальные фиксаторы, подходящие для резьбовых крепежных деталей. Однако такая информация о самоослаблении  резьбовых крепежных деталей приведет в замешательство проектировщика, не владеющего теоретическими знаниями.

Ниже изложены основные данные  о причинах самоотвинчивания резьбовых крепежных деталей и методах предотвращения данного явления.

О причинах самоотвинчивания болтов, гаек и других крепежных деталей

Разумеется, основной причиной ослабления болтов является вибрация.

Однако, в значительной степени более частой причиной ослабления, является боковой сдвиг гайки или головки болта относительно соединения, что приводит к появлению относительного движения в резьбе.

При отсутствии такого явления болты не ослабляются, даже если соединение подвергается очень сильной вибрации.  В процессе детального изучения можно также определить усилие зажима, необходимое для болтов во избежание скольжения в соединении.

Зачастую результатом самоотвинчивания болта является усталостное разрушение, которое уменьшает силу зажима, действующую на соединение. В результате возникает скольжение в соединении, которое приводит к воздействию изгибающей нагрузки на болт и впоследствии – к разрушению болта от усталости.

усталостное разрушение болтового соедиения

Затянутые болты (или гайки) вращаются свободно, поскольку  возникает относительное движение между внешней и внутренней резьбой. Это движение нейтрализует фрикционный зажим и создает момент затяжки, который пропорционален  шагу резьбы и предварительной нагрузке.

Существует три общеизвестные причины возникновения относительного движения в резьбе:

  1. Изгиб деталей, который приводит к возникновению усилий на поверхности трения. При возникновении  скольжения, головка и резьба проскальзывают, что приводит к ослаблению.
  2. Дифференциальные тепловые эффекты, возникающие при разнице температур или разнице в материалах стягиваемых деталей.
  3. Приложенные усилия на соединение, которые могут привести к смещению поверхностей соединения, что вызовет ослабление болта.

Борьба с самоотвинчиванием

В 60-ых гг. в Германии было изучено, что знакопеременное усилие, примененное перпендикулярно, предотвращает самоотвинчивание.

Изучение данного вопроса привело к созданию  установки для испытаний, которая позволила получить обширную информацию о  затягивающем действии самозатягивающихся крепежных деталей.

Такие установки, как машины Джанкерса (Junkers machines) (о данных установках можно просмотреть видео – см. внизу статьи) названные в литературе в честь изобретателя, используются последние двадцать лет большинством производителей аэрокосмической продукции и автомобилей для оценки рабочих характеристик специальных самофиксирующихся крепежных деталей.

В результате длительных испытаний и тщательного изучения, учеными были усовершенствованы разнообразные фиксаторы, используемые большинством крупных компаний.

Например, обычная пружинная шайба больше не используется, поскольку было доказано, что она фактически способствует ослаблению, а не предотвращает его.

шайба Гровера

Существует множество фиксаторов резьбовых соединений. Несмотря на работу Подкомитета Американских Национальных Стандартов B18:20 по фиксирующим крепежным деталям, выделяют три основные категории.

Такие как:

  • категория свободного вращения
  •  категория фрикционного сцепления
  • категория химического фиксирования.

К категории свободного вращения относят простые болты с круговым рядом зубчиков под головкой с буртиком.  Зубчики наклонного типа, что позволяет болту вращаться в направлении зажима, но стопориться в опорной поверхности при вращении в сторону отвинчивания. К данной категории относится «Визлок» («Whizlock»).

Категорию фрикционного сцепления можно разделить на две подкатегории: металлические и неметаллические. Металлические крепежные детали фрикционного сцепления обычно имеют  искривленную резьбу, которая обеспечивает создание крутящего момента; примером данной категории является гайка «Филидаз» («Philidas»).Неметаллические крепежные детали фрикционного сцепления имеют пластиковые вставки, выполняющие функцию зажима резьбы; пример – гайка «Нилок» («Nyloc»).

К категории химического зажима относятся связующие вещества, которые заполняют пространство между внутренней и внешней резьбой, тем самым связывая их; примером служит  «Локтайт» («Loctite»). Такие связующие вещества доступны в микроинкапсулированной форме и могут быть предварительно нанесены на резьбу.

Для того чтобы определить, что является наиболее подходящим для применения в каждом конкретном случае, необходимо тщательно изучить сферу и условия будущего использования крепежного изделия.

Если обобщить в двух словах, то, к примеру, категория химического зажима обеспечивает наилучшую защиту от вибрационного ослабления, благодаря фиксатору свободного свинчивания.

Однако каждая категория имеет свои преимущества и недостатки. И наиболее подходящий метод в каждом конкретном случае зависит от условий эксплуатации крепежного содинения.

В общих чертах, для того, чтобы предотвратить ослабление крепежных деталей, необходимо:

1. Убедиться, что на промежуточной поверхности соединения достаточная сила зажима для предотвращения относительного движения между головкой болта или гайки и соединением.

2. Проверить, чтобы соединение было сконструировано с возможностью сопротивления воздействиям от вдавливания и релаксации напряжений.

3. Проконтролировать, чтобы были указаны только проверенные фиксаторы резьбовых соединений. Особенно,  это касается резьбового герметика – такого как «Локтайт» («Loctite»), фланцевых крепежных деталей таких как «Визлок» («Whizlock»). Или крепежные детали, преобладающие крутящий момент, например,  «Нилок» («Nyloc»).

 

Абсолютно не рекомендуется использовать свободные шайбы Гровера простого или пружинного типа.

Самоотвинчивание крепежных деталей – только один из аспектов конструирования болтовых соединений, о которых должен помнить каждый конструктор в процессе проектирования.

Как видно на боковом фото, даже если резьба полностью зафиксирована герметиком, то это не устранит проблемы при недостаточной предварительной нагрузке болта для предотвращения сдвига соединения. На фото показан частично изношенный от сдвига болт М12.

Применение положения чертежного аналитического анализа для предотвращения вибрационного ослабления резьбовых крепежных деталей составляет сложную задачу.

Поэтому многие серьезные компании, такие, например, как Болт Саенс (Bolt Science) разработали компьютерные программы в помощь инженерам для преодоления проблем, связанных с использованием соединений с резьбовыми крепежными деталями и болтами.

Эти программы просты в использовании, и даже инженер с поверхностными знаниями в данной области сможет решить проблемы связанные с вышеуказанной задачей.